Seguir
Chris Child
Chris Child
Senior Lecturer, City, University of London
Dirección de correo verificada de city.ac.uk - Página principal
Título
Citado por
Citado por
Año
Ql-bt: Enhancing behaviour tree design and implementation with q-learning
R Dey, C Child
2013 IEEE Conference on Computational Inteligence in Games (CIG), 1-8, 2013
702013
NPCs as people, too: the extreme AI personality engine
J Georgeson, C Child
arXiv preprint arXiv:1609.04879, 2016
112016
Rendering non-euclidean space in real-time using spherical and hyperbolic trigonometry
D Osudin, C Child, YH He
Computational Science–ICCS 2019: 19th International Conference, Faro …, 2019
102019
Hand pose estimation using deep stereovision and markov-chain monte carlo
R Remilekun Basaru, G Slabaugh, E Alonso, C Child
Proceedings of the IEEE International Conference on Computer Vision …, 2017
82017
Agents and Environments
K Stathis, C Child, W Lu, GK Lekeas
Technical report, SOCS Consortium, 2002. IST32530/CITY/005/DN/I/a1, 2002
82002
Quantized census for stereoscopic image matching
RR Basaru, C Child, E Alonso, G Slabaugh
2014 2nd International Conference on 3D Vision 2, 22-29, 2014
72014
The apriori stochastic dependency detection (ASDD) algorithm for learning stochastic logic rules
C Child, K Stathis
International Workshop on Computational Logic in Multi-Agent Systems, 234-249, 2004
72004
HandyDepth: Example-based stereoscopic hand depth estimation using Eigen Leaf Node Features
RR Basaru, GG Slabaugh, C Child, E Alonso
2016 International Conference on Systems, Signals and Image Processing …, 2016
62016
Rule value reinforcement learning for cognitive agents
C Child, K Stathis
Proceedings of the fifth international joint conference on autonomous agents …, 2006
42006
Data‐driven recovery of hand depth using CRRF on stereo images
RR Basaru, C Child, E Alonso, G Slabaugh
IET Computer Vision 12 (5), 666-678, 2018
32018
Performance Enhancement of Deep Reinforcement Learning Networks using Feature Extraction
J Ollero, C Child
Advances in Neural Networks–ISNN 2018: 15th International Symposium on …, 2018
32018
SMART (Stochastic Model Acquisition with ReinforcemenT) learning agents: A preliminary report
C Child, K Stathis
Symposium on Adaptive Agents and Multi-agent Systems, 73-87, 2003
32003
Modelling Emotion Based Reward Valuation with Computational Reinforcement Learning
CHT Child, C Koluman, T Weyde
Proceedings of the 41st Annual Conference of the Cognitive Science Society …, 2019
22019
Implementing racing AI using q-learning and steering behaviours
BP Trusler, C Child
Conference on Simulation and AI in Computer Games 11, 09-2014, 2014
22014
Be The controller: a kinect tool kit for video game control
N Hadjiminas, C Child
Computer Games, Multimedia and Allied Technology (CGAT 2012), 44, 2012
22012
Be the controller: A kinect tool kit for video game control-recognition of human motion using skeletal relational angles
N Hadjiminas, CHT Child
22012
Learning to Act with RVRL agents
CHT Child, K Stathis, A Garcez
22007
International Classification of Diseases Prediction from MIMIIC-III Clinical Text Using Pre-Trained ClinicalBERT and NLP Deep Learning Models Achieving State of the Art
I Aden, CHT Child, CC Reyes-Aldasoro
Big Data and Cognitive Computing 8 (5), 47, 2024
12024
Non-Euclidean Video Games: Exploring Player Perceptions and Experiences inside Impossible Spaces
D Osudin, A Denisova, C Child
IEEE Transactions on Games, 2024
2024
ORCID: 0000-0001-5425-2308, Koluman, C. and Weyde, T. ORCID: 0000-0001-8028-9905 (2019). Modelling Emotion Based Reward Valuation with Computational Reinforcement Learning
CHT Child
Cogsci, 2019
2019
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20