A cookbook of self-supervised learning. arXiv 2023 R Balestriero, M Ibrahim, V Sobal, A Morcos, S Shekhar, T Goldstein, ...
arXiv preprint arXiv:2304.12210, 0
125 * Tico: Transformation invariance and covariance contrast for self-supervised visual representation learning J Zhu, RM Moraes, S Karakulak, V Sobol, A Canziani, Y LeCun
arXiv preprint arXiv:2206.10698, 2022
35 2022 Light-weight probing of unsupervised representations for Reinforcement Learning NC Wancong Zhang, Anthony GX-Chen, Vlad Sobal, Yann LeCun
Reinforcement Learning Conference 1, 1924-1949, 2024
9 * 2024 Joint embedding predictive architectures focus on slow features V Sobal, J SV, S Jalagam, N Carion, K Cho, Y LeCun
arXiv preprint arXiv:2211.10831, 2022
9 2022 Separating the world and ego models for self-driving V Sobal, A Canziani, N Carion, K Cho, Y LeCun
arXiv preprint arXiv:2204.07184, 2022
6 2022 Hierarchical World Models as Visual Whole-Body Humanoid Controllers N Hansen, J SV, V Sobal, Y LeCun, X Wang, H Su
arXiv preprint arXiv:2405.18418, 2024
5 2024 Gradient-based planning with world models SV Jyothir, S Jalagam, Y LeCun, V Sobal
arXiv preprint arXiv:2312.17227, 2023
4 2023 Gradient-based Planning with World Models J SV, S Jalagam, Y LeCun, V Sobal
arXiv preprint arXiv:2312.17227, 2023
1 2023 -Sample Contrastive Loss: Improving Contrastive Learning with Sample Similarity GraphsV Sobal, M Ibrahim, R Balestriero, V Cabannes, D Bouchacourt, P Astolfi, ...
arXiv preprint arXiv:2407.18134, 2024
2024 Gradient-based Planning with World Models S Jalagam, Y LeCun, V Sobal
arXiv e-prints, arXiv: 2312.17227, 2023
2023