Seguir
Erhan Gundogdu
Título
Citado por
Citado por
Año
The visual object tracking vot2015 challenge results
M Kristan, J Matas, A Leonardis, M Felsberg, L Cehovin, G Fernandez, ...
Proceedings of the IEEE international conference on computer vision …, 2015
2718*2015
Good features to correlate for visual tracking
E Gundogdu, AA Alatan
IEEE Transactions on Image Processing 27 (5), 2526-2540, 2018
1822018
Garnet: A two-stream network for fast and accurate 3d cloth draping
E Gundogdu, V Constantin, A Seifoddini, M Dang, M Salzmann, P Fua
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019
1372019
Abo: Dataset and benchmarks for real-world 3d object understanding
J Collins, S Goel, K Deng, A Luthra, L Xu, E Gundogdu, X Zhang, ...
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2022
1222022
The visual object tracking VOT2016 challenge results
G Roffo, S Melzi
Computer Vision--ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8 …, 2016
1222016
Marvel: A large-scale image dataset for maritime vessels
E Gundogdu, B Solmaz, V Yücesoy, A Koc
Computer Vision–ACCV 2016: 13th Asian Conference on Computer Vision, Taipei …, 2017
932017
Revamping cross-modal recipe retrieval with hierarchical transformers and self-supervised learning
A Salvador, E Gundogdu, L Bazzani, M Donoser
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021
632021
Comparison of infrared and visible imagery for object tracking: Toward trackers with superior ir performance
E Gundogdu, H Ozkan, H Seckin Demir, H Ergezer, E Akagunduz, ...
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2015
482015
Shape reconstruction by learning differentiable surface representations
J Bednarik, S Parashar, E Gundogdu, M Salzmann, P Fua
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
452020
Garnet++: Improving fast and accurate static 3d cloth draping by curvature loss
E Gundogdu, V Constantin, S Parashar, A Seifoddini, M Dang, ...
IEEE Transactions on Pattern Analysis and Machine Intelligence 44 (1), 181-195, 2020
382020
Evaluation of feature channels for correlation-filter-based visual object tracking in infrared spectrum
E Gundogdu, A Koc, B Solmaz, RI Hammoud, A Aydin Alatan
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2016
382016
Sparse representation of two-and three-dimensional images with fractional Fourier, Hartley, linear canonical, and Haar wavelet transforms
A Koç, B Bartan, E Gundogdu, T Çukur, HM Ozaktas
Expert Systems with Applications 77, 247-255, 2017
262017
Spatial windowing for correlation filter based visual tracking
E Gundogdu, AA Alatan
2016 IEEE International Conference on Image Processing (ICIP), 1684-1688, 2016
252016
Fine‐grained recognition of maritime vessels and land vehicles by deep feature embedding
B Solmaz, E Gundogdu, V Yucesoy, A Koc, AA Alatan
IET Computer Vision 12 (8), 1121-1132, 2018
222018
Object classification in infrared images using deep representations
E Gundogdu, A Koc, AA Alatan
2016 IEEE International Conference on Image Processing (ICIP), 1066-1070, 2016
192016
Generic and attribute-specific deep representations for maritime vessels
B Solmaz, E Gundogdu, V Yucesoy, A Koc
IPSJ Transactions on Computer Vision and Applications 9 (1), 22, 2017
142017
Extending correlation filter-based visual tracking by tree-structured ensemble and spatial windowing
E Gundogdu, H Ozkan, AA Alatan
IEEE Transactions on Image Processing 26 (11), 5270-5283, 2017
142017
Deep distance metric learning for maritime vessel identification
E Gundogdu, B Solmaz, A Koç, V Yücesoy, AA Alatan
2017 25th Signal Processing and Communications Applications Conference (SIU …, 2017
112017
Hager, and et al. The visual object tracking vot2016 challenge results
M Kristan, J Matas, A Leonardis, M Felsberg, L Cehovin, G Fernández, ...
ECCV workshop 2 (6), 8, 2016
112016
Automatic target recognition and detection in infrared imagery under cluttered background
E Gundogdu, A Koç, AA Alatan
Target and background signatures III 10432, 178-184, 2017
72017
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20