Seguir
Matthias Boehm
Título
Citado por
Citado por
Año
Systemml: Declarative machine learning on spark
M Boehm, MW Dusenberry, D Eriksson, AV Evfimievski, FM Manshadi, ...
Proceedings of the VLDB Endowment 9 (13), 1425-1436, 2016
2592016
Data management in machine learning: Challenges, techniques, and systems
A Kumar, M Boehm, J Yang
Proceedings of the 2017 ACM International Conference on Management of Data …, 2017
1832017
Hybrid parallelization strategies for large-scale machine learning in systemml
M Boehm, S Tatikonda, B Reinwald, P Sen, Y Tian, DR Burdick, ...
Proceedings of the VLDB Endowment 7 (7), 553-564, 2014
1112014
Compressed linear algebra for large-scale machine learning
A Elgohary, M Boehm, PJ Haas, FR Reiss, B Reinwald
Proceedings of the VLDB Endowment 9 (12), 960-971, 2016
922016
Data management in the mirabel smart grid system
M Boehm, L Dannecker, A Doms, E Dovgan, B Filipič, U Fischer, ...
Proceedings of the 2012 Joint EDBT/ICDT Workshops, 95-102, 2012
892012
Efficient in-memory indexing with generalized prefix trees
M Boehm, B Schlegel, PB Volk, U Fischer, D Habich, W Lehner
Gesellschaft für Informatik eV, 2011
832011
Resource elasticity for large-scale machine learning
B Huang, M Boehm, Y Tian, B Reinwald, S Tatikonda, FR Reiss
Proceedings of the 2015 ACM SIGMOD International Conference on Management of …, 2015
752015
SystemDS: A declarative machine learning system for the end-to-end data science lifecycle
M Boehm, I Antonov, S Baunsgaard, M Dokter, R Ginthör, K Innerebner, ...
arXiv preprint arXiv:1909.02976, 2019
742019
On optimizing operator fusion plans for large-scale machine learning in systemml
M Boehm, B Reinwald, D Hutchison, AV Evfimievski, P Sen
arXiv preprint arXiv:1801.00829, 2018
722018
Data management in machine learning systems
M Boehm, A Kumar, J Yang
Morgan & Claypool Publishers, 2019
692019
On optimizing machine learning workloads via kernel fusion
A Ashari, S Tatikonda, M Boehm, B Reinwald, K Campbell, J Keenleyside, ...
ACM SIGPLAN Notices 50 (8), 173-182, 2015
602015
Sliceline: Fast, linear-algebra-based slice finding for ml model debugging
S Sagadeeva, M Boehm
Proceedings of the 2021 international conference on management of data, 2290 …, 2021
582021
SPOOF: Sum-Product Optimization and Operator Fusion for Large-Scale Machine Learning.
T Elgamal, S Luo, M Boehm, AV Evfimievski, S Tatikonda, B Reinwald, ...
CIDR 2 (6), 25, 2017
562017
SystemML's Optimizer: Plan Generation for Large-Scale Machine Learning Programs.
M Boehm, DR Burdick, AV Evfimievski, B Reinwald, FR Reiss, P Sen, ...
IEEE Data Eng. Bull. 37 (3), 52-62, 2014
492014
Pipelined approach to fused kernels for optimization of machine learning workloads on graphical processing units
A Ashari, M Boehm, KW Campbell, A Evfimievski, JD Keenleyside, ...
US Patent 9,972,063, 2018
352018
Daphne: An open and extensible system infrastructure for integrated data analysis pipelines
P Damme, M Birkenbach, C Bitsakos, M Boehm, P Bonnet, F Ciorba, ...
Conference on Innovative Data Systems Research, 2022
342022
Hybrid parallelization strategies for machine learning programs on top of MapReduce
M Boehm, D Burdick, B Reinwald, P Sen, S Tatikonda, Y Tian, ...
US Patent 9,286,044, 2016
332016
Context-aware parameter estimation for forecast models in the energy domain
L Dannecker, R Schulze, M Böhm, W Lehner, G Hackenbroich
Scientific and Statistical Database Management: 23rd International …, 2011
332011
Compressed linear algebra for large-scale machine learning
A Elgohary, M Boehm, PJ Haas, FR Reiss, B Reinwald
The VLDB Journal 27 (5), 719-744, 2018
322018
Lima: Fine-grained lineage tracing and reuse in machine learning systems
A Phani, B Rath, M Boehm
Proceedings of the 2021 International Conference on Management of Data, 1426 …, 2021
312021
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20