Quantum chemistry structures and properties of 134 kilo molecules R Ramakrishnan, PO Dral, M Rupp, OA Von Lilienfeld Scientific data 1 (1), 1-7, 2014 | 2064 | 2014 |
Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space K Hansen, F Biegler, R Ramakrishnan, W Pronobis, OA Von Lilienfeld, ... The journal of physical chemistry letters 6 (12), 2326-2331, 2015 | 882 | 2015 |
Big data meets quantum chemistry approximations: the Δ-machine learning approach R Ramakrishnan, PO Dral, M Rupp, OA Von Lilienfeld Journal of chemical theory and computation 11 (5), 2087-2096, 2015 | 866 | 2015 |
Electronic spectra from TDDFT and machine learning in chemical space R Ramakrishnan, M Hartmann, E Tapavicza, OA von Lilienfeld The Journal of chemical physics 143 (8), 084111, 2015 | 302 | 2015 |
Machine learning for quantum mechanical properties of atoms in molecules M Rupp, R Ramakrishnan, OA von Lilienfeld The journal of physical chemistry letters 6 (16), 3309–3313, 2015 | 252 | 2015 |
Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties OA von Lilienfeld, R Ramakrishnan, M Rupp, A Knoll International Journal of Quantum Chemistry, 2015 | 252 | 2015 |
MACHINE LEARNING, QUANTUM CHEMISTRY, AND CHEMICAL SPACE R Ramakrishnan, OA von Lilienfeld Reviews in Computational Chemistry, 2017 | 97 | 2017 |
Many Molecular Properties from One Kernel in Chemical Space R Ramakrishnan, OA von Lilienfeld CHIMIA 69 (4), 182-186, 2015 | 92 | 2015 |
Genetic optimization of training sets for improved machine learning models of molecular properties NJ Browning, R Ramakrishnan, OA Von Lilienfeld, U Roethlisberger The journal of physical chemistry letters 8 (7), 1351-1359, 2017 | 84 | 2017 |
Generalized density-functional tight-binding repulsive potentials from unsupervised machine learning JJ Kranz, M Kubillus, R Ramakrishnan, OA von Lilienfeld, M Elstner Journal of chemical theory and computation 14 (5), 2341-2352, 2018 | 73 | 2018 |
Semi-quartic force fields retrieved from multi-mode expansions: Accuracy, scaling behavior, and approximations R Ramakrishnan, G Rauhut The Journal of chemical physics 142 (15), 2015 | 54 | 2015 |
Fast and accurate predictions of covalent bonds in chemical space KY Chang, S Fias, R Ramakrishnan, OA Von Lilienfeld The Journal of chemical physics 144 (17), 2016 | 50 | 2016 |
The DFT+ U method in the linear combination of Gaussian-type orbitals framework: Role of 4f orbitals in the bonding of LuF3 R Ramakrishnan, AV Matveev, N Rösch Chemical Physics Letters 468 (4-6), 158-161, 2009 | 28 | 2009 |
Revving up 13C NMR shielding predictions across chemical space: benchmarks for atoms-in-molecules kernel machine learning with new data for 134 kilo molecules A Gupta, S Chakraborty, R Ramakrishnan Machine Learning: Science and Technology 2 (3), 035010, 2021 | 27 | 2021 |
Control and analysis of single-determinant electron dynamics R Ramakrishnan, M Nest Physical Review A—Atomic, Molecular, and Optical Physics 85 (5), 054501, 2012 | 24 | 2012 |
Reviews in Computational Chemistry R Ramakrishnan, OA Von Lilienfeld Wiley, 2017 | 21 | 2017 |
Manifestation of diamagnetic chemical shifts of proton NMR signals by an anisotropic shielding effect of nitrate anions HS Sahoo, DK Chand, S Mahalakshmi, MH Mir, R Raghunathan Tetrahedron letters 48 (5), 761-765, 2007 | 21 | 2007 |
Critical benchmarking of popular composite thermochemistry models and density functional approximations on a probabilistically pruned benchmark dataset of formation enthalpies SK Das, S Chakraborty, R Ramakrishnan The Journal of Chemical Physics 154 (4), 2021 | 18 | 2021 |
The chemical space of B, N-substituted polycyclic aromatic hydrocarbons: Combinatorial enumeration and high-throughput first-principles modeling S Chakraborty, P Kayastha, R Ramakrishnan The Journal of chemical physics 150 (11), 2019 | 18 | 2019 |
Effects of the self-interaction error in Kohn–Sham calculations: A DFT+ U case study on penta-aqua uranyl (VI) R Ramakrishnan, AV Matveev, N Rösch Computational and Theoretical Chemistry 963 (2-3), 337-343, 2011 | 16 | 2011 |