Seguir
Raghunathan Ramakrishnan
Raghunathan Ramakrishnan
Tata Institute of Fundamental Research Hyderabad, India
Dirección de correo verificada de tifrh.res.in - Página principal
Título
Citado por
Citado por
Año
Quantum chemistry structures and properties of 134 kilo molecules
R Ramakrishnan, PO Dral, M Rupp, OA Von Lilienfeld
Scientific data 1 (1), 1-7, 2014
20642014
Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space
K Hansen, F Biegler, R Ramakrishnan, W Pronobis, OA Von Lilienfeld, ...
The journal of physical chemistry letters 6 (12), 2326-2331, 2015
8822015
Big data meets quantum chemistry approximations: the Δ-machine learning approach
R Ramakrishnan, PO Dral, M Rupp, OA Von Lilienfeld
Journal of chemical theory and computation 11 (5), 2087-2096, 2015
8662015
Electronic spectra from TDDFT and machine learning in chemical space
R Ramakrishnan, M Hartmann, E Tapavicza, OA von Lilienfeld
The Journal of chemical physics 143 (8), 084111, 2015
3022015
Machine learning for quantum mechanical properties of atoms in molecules
M Rupp, R Ramakrishnan, OA von Lilienfeld
The journal of physical chemistry letters 6 (16), 3309–3313, 2015
2522015
Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties
OA von Lilienfeld, R Ramakrishnan, M Rupp, A Knoll
International Journal of Quantum Chemistry, 2015
2522015
MACHINE LEARNING, QUANTUM CHEMISTRY, AND CHEMICAL SPACE
R Ramakrishnan, OA von Lilienfeld
Reviews in Computational Chemistry, 2017
972017
Many Molecular Properties from One Kernel in Chemical Space
R Ramakrishnan, OA von Lilienfeld
CHIMIA 69 (4), 182-186, 2015
922015
Genetic optimization of training sets for improved machine learning models of molecular properties
NJ Browning, R Ramakrishnan, OA Von Lilienfeld, U Roethlisberger
The journal of physical chemistry letters 8 (7), 1351-1359, 2017
842017
Generalized density-functional tight-binding repulsive potentials from unsupervised machine learning
JJ Kranz, M Kubillus, R Ramakrishnan, OA von Lilienfeld, M Elstner
Journal of chemical theory and computation 14 (5), 2341-2352, 2018
732018
Semi-quartic force fields retrieved from multi-mode expansions: Accuracy, scaling behavior, and approximations
R Ramakrishnan, G Rauhut
The Journal of chemical physics 142 (15), 2015
542015
Fast and accurate predictions of covalent bonds in chemical space
KY Chang, S Fias, R Ramakrishnan, OA Von Lilienfeld
The Journal of chemical physics 144 (17), 2016
502016
The DFT+ U method in the linear combination of Gaussian-type orbitals framework: Role of 4f orbitals in the bonding of LuF3
R Ramakrishnan, AV Matveev, N Rösch
Chemical Physics Letters 468 (4-6), 158-161, 2009
282009
Revving up 13C NMR shielding predictions across chemical space: benchmarks for atoms-in-molecules kernel machine learning with new data for 134 kilo molecules
A Gupta, S Chakraborty, R Ramakrishnan
Machine Learning: Science and Technology 2 (3), 035010, 2021
272021
Control and analysis of single-determinant electron dynamics
R Ramakrishnan, M Nest
Physical Review A—Atomic, Molecular, and Optical Physics 85 (5), 054501, 2012
242012
Reviews in Computational Chemistry
R Ramakrishnan, OA Von Lilienfeld
Wiley, 2017
212017
Manifestation of diamagnetic chemical shifts of proton NMR signals by an anisotropic shielding effect of nitrate anions
HS Sahoo, DK Chand, S Mahalakshmi, MH Mir, R Raghunathan
Tetrahedron letters 48 (5), 761-765, 2007
212007
Critical benchmarking of popular composite thermochemistry models and density functional approximations on a probabilistically pruned benchmark dataset of formation enthalpies
SK Das, S Chakraborty, R Ramakrishnan
The Journal of Chemical Physics 154 (4), 2021
182021
The chemical space of B, N-substituted polycyclic aromatic hydrocarbons: Combinatorial enumeration and high-throughput first-principles modeling
S Chakraborty, P Kayastha, R Ramakrishnan
The Journal of chemical physics 150 (11), 2019
182019
Effects of the self-interaction error in Kohn–Sham calculations: A DFT+ U case study on penta-aqua uranyl (VI)
R Ramakrishnan, AV Matveev, N Rösch
Computational and Theoretical Chemistry 963 (2-3), 337-343, 2011
162011
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20