Seguir
Kurt Cutajar
Kurt Cutajar
Dirección de correo verificada de amazon.com
Título
Citado por
Citado por
Año
Random Feature Expansions for Deep Gaussian Processes
K Cutajar, EV Bonilla, P Michiardi, M Filippone
Proceedings of the 34th International Conference on Machine Learning (ICML), 2017
1842017
Deep Gaussian Processes for Multi-fidelity Modeling
K Cutajar, M Pullin, A Damianou, N Lawrence, J González
Third Bayesian Deep Learning Workshop, Advances in Neural Information …, 2019
1322019
Preconditioning kernel matrices
K Cutajar, M Osborne, J Cunningham, M Filippone
Proceedings of the 33rd International Conference on Machine Learning (ICML …, 2016
912016
AutoGP: Exploring the Capabilities and Limitations of Gaussian Process Models
K Krauth, EV Bonilla, K Cutajar, M Filippone
Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence …, 2017
662017
Entropic Trace Estimates for Log Determinants
J Fitzsimons, D Granziol, K Cutajar, M Osborne, M Filippone, S Roberts
Machine Learning and Knowledge Discovery in Databases - European Conference …, 2017
262017
Bayesian Inference of Log Determinants
J Fitzsimons, K Cutajar, M Osborne, S Roberts, M Filippone
Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence …, 2017
172017
Broadening the Scope of Gaussian Processes for Large-Scale Learning
K Cutajar
Sorbonne University, 2019
52019
Inherently Interpretable Time Series Classification via Multiple Instance Learning
J Early, GKC Cheung, K Cutajar, H Xie, J Kandola, N Twomey
The Twelfth International Conference on Learning Representations (ICLR 2024), 2023
42023
Low-count Time Series Anomaly Detection
P Renz, K Cutajar, N Twomey, G Cheung, H Xie
2023
Accelerating Deep Gaussian Process Inference with Arc-Cosine Kernels
K Cutajar, EV Bonilla, P Michiardi, M Filippone
First Bayesian Deep Learning Workshop, Advances in Neural Information …, 2016
2016
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–10