Seguir
Anirudha Majumdar
Anirudha Majumdar
Associate Professor, Princeton University & Visiting Research Scientist, Google DeepMind
Dirección de correo verificada de princeton.edu - Página principal
Título
Citado por
Citado por
Año
Funnel libraries for real-time robust feedback motion planning
A Majumdar, R Tedrake
International Journal of Robotics Research 36 (8), 947-982, 2017
4642017
DSOS and SDSOS optimization: more tractable alternatives to sum of squares and semidefinite optimization
AA Ahmadi, A Majumdar
SIAM Journal on Applied Algebra and Geometry 3 (2), 193-230, 2019
2722019
DSOS and SDSOS optimization: more tractable alternatives to sum of squares and semidefinite optimization
AA Ahmadi, A Majumdar
SIAM Journal on Applied Algebra and Geometry 3 (2), 193-230, 2019
2632019
Robust Online Motion Planning via Contraction Theory and Convex Optimization
S Singh, A Majumdar, JJ Slotine, M Pavone
2272017
How should a robot assess risk? towards an axiomatic theory of risk in robotics
A Majumdar, M Pavone
Robotics Research: The 18th International Symposium ISRR, 75-84, 2020
2182020
Control design along trajectories with sums of squares programming
A Majumdar, AA Ahmadi, R Tedrake
International Conference on Robotics and Automation (ICRA), 2013, 2013
1922013
Convex Optimization of Nonlinear Feedback Controllers via Occupation Measures
A Majumdar, R Vasudevan, MM Tobenkin, R Tedrake
International Journal of Robotics Research (IJRR) 33 (9), 1209-1230, 2014
1532014
DSOS and SDSOS optimization: LP and SOCP-based alternatives to sum of squares optimization
AA Ahmadi, A Majumdar
2014 48th annual conference on information sciences and systems (CISS), 1-5, 2014
1422014
Robots that ask for help: Uncertainty alignment for large language model planners
AZ Ren, A Dixit, A Bodrova, S Singh, S Tu, N Brown, P Xu, L Takayama, ...
arXiv preprint arXiv:2307.01928, 2023
1312023
Recent scalability improvements for semidefinite programming with applications in machine learning, control, and robotics
A Majumdar, G Hall, AA Ahmadi
Annual Review of Control, Robotics, and Autonomous Systems 3 (1), 331-360, 2020
1262020
Robust online motion planning with regions of finite time invariance
A Majumdar, R Tedrake
Algorithmic Foundations of Robotics X: Proceedings of the Tenth Workshop on …, 2013
1102013
Control and verification of high-dimensional systems with DSOS and SDSOS programming
A Majumdar, AA Ahmadi, R Tedrake
IEEE Conference on Decision and Control (CDC), 394-401, 2014
99*2014
Some applications of polynomial optimization in operations research and real-time decision making
AA Ahmadi, A Majumdar
Optimization Letters 10, 709-729, 2016
842016
Risk-sensitive Inverse Reinforcement Learning via Coherent Risk Models
A Majumdar, S Singh, A Mandlekar, M Pavone
Robotics: Science and Systems 16, 117, 2017
802017
A framework for time-consistent, risk-sensitive model predictive control: Theory and algorithms
S Singh, Y Chow, A Majumdar, M Pavone
IEEE Transactions on Automatic Control 64 (7), 2905-2912, 2018
702018
Foundation models in robotics: Applications, challenges, and the future
R Firoozi, J Tucker, S Tian, A Majumdar, J Sun, W Liu, Y Zhu, S Song, ...
arXiv preprint arXiv:2312.07843, 2023
642023
Safety verification of reactive controllers for UAV flight in cluttered environments using barrier certificates
AJ Barry, A Majumdar, R Tedrake
2012 IEEE International Conference on Robotics and Automation, 484-490, 2012
622012
Invariant policy optimization: Towards stronger generalization in reinforcement learning
A Sonar, V Pacelli, A Majumdar
Learning for Dynamics and Control, 21-33, 2021
542021
Synthesis and Optimization of Force Closure Grasps via Sequential Semidefinite Programming
H Dai, A Majumdar, R Tedrake
International Symposium on Robotics Research (ISRR), 2015
522015
Physically grounded vision-language models for robotic manipulation
J Gao, B Sarkar, F Xia, T Xiao, J Wu, B Ichter, A Majumdar, D Sadigh
2024 IEEE International Conference on Robotics and Automation (ICRA), 12462 …, 2024
512024
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20