Robust physical-world attacks on deep learning visual classification K Eykholt, I Evtimov, E Fernandes, B Li, A Rahmati, C Xiao, A Prakash, ... Proceedings of the IEEE conference on computer vision and pattern …, 2018 | 3124* | 2018 |
Physical adversarial examples for object detectors D Song, K Eykholt, I Evtimov, E Fernandes, B Li, A Rahmati, F Tramer, ... 12th USENIX workshop on offensive technologies (WOOT 18), 2018 | 521 | 2018 |
Internet of things security research: A rehash of old ideas or new intellectual challenges? E Fernandes, A Rahmati, K Eykholt, A Prakash IEEE Security & Privacy 15 (4), 79-84, 2017 | 133 | 2017 |
Note on attacking object detectors with adversarial stickers K Eykholt, I Evtimov, E Fernandes, B Li, D Song, T Kohno, A Rahmati, ... arXiv preprint arXiv:1712.08062, 2017 | 44 | 2017 |
Tyche: A risk-based permission model for smart homes A Rahmati, E Fernandes, K Eykholt, A Prakash 2018 IEEE Cybersecurity Development (SecDev), 29-36, 2018 | 37 | 2018 |
Robust physical-world attacks on deep learning visual classification K Eykholt, I Evtimov, E Fernandes, B Li, A Rahmati, C Xiao, A Prakash, ... | 21 | 2020 |
Robust physical-world attacks on deep learning models (2017) K Eykholt, I Evtimov, E Fernandes, B Li, A Rahmati, C Xiao, A Prakash, ... arXiv preprint arXiv:1707.08945, 2018 | 20 | 2018 |
Tyche: Risk-based permissions for smart home platforms A Rahmati, E Fernandes, K Eykholt, A Prakash arXiv preprint arXiv:1801.04609, 2018 | 14 | 2018 |
Separation of powers in federated learning (poster paper) PC Cheng, K Eykholt, Z Gu, H Jamjoom, KR Jayaram, E Valdez, A Verma Proceedings of the First Workshop on Systems Challenges in Reliable and …, 2021 | 11 | 2021 |
Can attention masks improve adversarial robustness? P Vaishnavi, T Cong, K Eykholt, A Prakash, A Rahmati International Workshop on Engineering Dependable and Secure Machine Learning …, 2020 | 10 | 2020 |
Transferring adversarial robustness through robust representation matching P Vaishnavi, K Eykholt, A Rahmati 31st USENIX Security Symposium (USENIX Security 22), 2083-2098, 2022 | 8 | 2022 |
Heimdall: A privacy-respecting implicit preference collection framework A Rahmati, E Fernandes, K Eykholt, X Chen, A Prakash Proceedings of the 15th Annual International Conference on Mobile Systems …, 2017 | 7 | 2017 |
Ares: A system-oriented wargame framework for adversarial ml F Ahmed, P Vaishnavi, K Eykholt, A Rahmati 2022 IEEE Security and Privacy Workshops (SPW), 73-79, 2022 | 5 | 2022 |
Ensuring Authorized Updates in Multi-user {Database-Backed} Applications K Eykholt, A Prakash, B Mozafari 26th USENIX Security Symposium (USENIX Security 17), 1445-1462, 2017 | 5 | 2017 |
EdgeTorrent: Real-time Temporal Graph Representations for Intrusion Detection IJ King, X Shu, J Jang, K Eykholt, T Lee, HH Huang Proceedings of the 26th International Symposium on Research in Attacks …, 2023 | 4 | 2023 |
{URET}: Universal Robustness Evaluation Toolkit (for Evasion) K Eykholt, T Lee, D Schales, J Jang, I Molloy 32nd USENIX Security Symposium (USENIX Security 23), 3817-3833, 2023 | 4 | 2023 |
Accelerating certified robustness training via knowledge transfer P Vaishnavi, K Eykholt, A Rahmati Advances in Neural Information Processing Systems 35, 5269-5281, 2022 | 4 | 2022 |
Constraining neural networks for robustness through alternative encoding K Eykholt, T Lee, IM Molloy, J Jang US Patent 11,847,555, 2023 | 3 | 2023 |
Graph neural network (gnn) training using meta-path neighbor sampling and contrastive learning D She, X Shu, K Eykholt, J Jang US Patent App. 17/480,012, 2023 | 3 | 2023 |
Adaptive verifiable training using pairwise class similarity S Wang, K Eykholt, T Lee, J Jang, I Molloy Proceedings of the AAAI Conference on Artificial Intelligence 35 (11), 10201 …, 2021 | 3 | 2021 |