Seguir
Weijie Su
Weijie Su
Otros nombresWeijie J. Su
Associate Professor, University of Pennsylvania
Dirección de correo verificada de wharton.upenn.edu - Página principal
Título
Citado por
Citado por
Año
A differential equation for modeling Nesterov's accelerated gradient method: theory and insights
W Su, S Boyd, EJ Candes
Journal of Machine Learning Research 17 (153), 5312-5354, 2016
12672016
Gaussian differential privacy
J Dong, A Roth, WJ Su
Journal of the Royal Statistical Society: Series B (Statistical Methodology …, 2022
4032022
SLOPE—adaptive variable selection via convex optimization
M Bogdan, E van den Berg, C Sabatti, W Su, EJ Candès
The Annals of Applied Statistics 9 (3), 1103, 2015
3232015
Understanding the acceleration phenomenon via high-resolution differential equations
B Shi, SS Du, MI Jordan, WJ Su
Mathematical Programming 195 (1), 79-148, 2022
2392022
False discoveries occur early on the lasso path
W Su, M Bogdan, E Candes
The Annals of Statistics 45 (5), 2133-2150, 2017
2162017
Deep learning with Gaussian differential privacy
Z Bu, J Dong, Q Long, WJ Su
Harvard Data Science Review 2020 (23), 2020
1982020
SLOPE is adaptive to unknown sparsity and asymptotically minimax
W Su, E Candes
The Annals of Statistics 44 (3), 1038-1068, 2016
1572016
Exploring deep neural networks via layer-peeled model: Minority collapse in imbalanced training
C Fang, H He, Q Long, WJ Su
Proceedings of the National Academy of Sciences 118 (43), e2103091118, 2021
140*2021
Acceleration via symplectic discretization of high-resolution differential equations
B Shi, SS Du, WJ Su, MI Jordan
Advances in Neural Information Processing Systems 32, 5744-5752, 2019
1242019
Statistical estimation and testing via the sorted L1 norm
M Bogdan, E Berg, W Su, E Candes
Stanford Statistics Tech Report, 2013
942013
An unconstrained layer-peeled perspective on neural collapse
W Ji, Y Lu, Y Zhang, Z Deng, WJ Su
International Conference on Learning Representations (ICLR), 2022
622022
Higrad: Uncertainty quantification for online learning and stochastic approximation
WJ Su, Y Zhu
Journal of Machine Learning Research 24 (124), 1-53, 2023
61*2023
Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing
Z Bu, JM Klusowski, C Rush, WJ Su
IEEE Transactions on Information Theory 67 (1), 506-537, 2020
552020
Familywise error rate control via knockoffs
L Janson, W Su
552016
Group slope–adaptive selection of groups of predictors
D Brzyski, A Gossmann, W Su, M Bogdan
Journal of the American Statistical Association 114 (525), 419-433, 2019
512019
On learning rates and Schrödinger operators
B Shi, W Su, MI Jordan
Journal of Machine Learning Research 24 (379), 1-53, 2023
502023
Federated f-Differential Privacy
Q Zheng, S Chen, Q Long, W Su
International Conference on Artificial Intelligence and Statistics 130, 2251 …, 2021
502021
Differentially private false discovery rate control
C Dwork, WJ Su, L Zhang
Journal of Privacy and Confidentiality 11 (2), 2021
47*2021
The local elasticity of neural networks
H He, WJ Su
International Conference on Learning Representations, 2020
412020
A power analysis for model-X knockoffs with -regularized statistics
A Weinstein, WJ Su, M Bogdan, R Foygel Barber, EJ Candès
The Annals of Statistics 51 (3), 1005-1029, 2023
39*2023
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20