Seguir
Pedro Porto Buarque de Gusmão
Pedro Porto Buarque de Gusmão
Dirección de correo verificada de surrey.ac.uk - Página principal
Título
Citado por
Citado por
Año
Flower: A friendly federated learning research framework
DJ Beutel, T Topal, A Mathur, X Qiu, J Fernandez-Marques, Y Gao, L Sani, ...
arXiv preprint arXiv:2007.14390, 2020
9552020
Ganvo: Unsupervised deep monocular visual odometry and depth estimation with generative adversarial networks
Y Almalioglu, MRU Saputra, PPB De Gusmao, A Markham, N Trigoni
2019 International conference on robotics and automation (ICRA), 5474-5480, 2019
1902019
Distilling knowledge from a deep pose regressor network
MRU Saputra, PPB De Gusmao, Y Almalioglu, A Markham, N Trigoni
Proceedings of the IEEE/CVF international conference on computer vision, 263-272, 2019
1272019
SelfVIO: Self-supervised deep monocular Visual–Inertial Odometry and depth estimation
Y Almalioglu, M Turan, MRU Saputra, PPB De Gusmão, A Markham, ...
Neural Networks 150, 119-136, 2022
1172022
milliEgo: single-chip mmWave radar aided egomotion estimation via deep sensor fusion
CX Lu, MRU Saputra, P Zhao, Y Almalioglu, PPB De Gusmao, C Chen, ...
Proceedings of the 18th Conference on Embedded Networked Sensor Systems, 109-122, 2020
1052020
A first look into the carbon footprint of federated learning
X Qiu, T Parcollet, J Fernandez-Marques, PPB Gusmao, Y Gao, DJ Beutel, ...
Journal of Machine Learning Research 24 (129), 1-23, 2023
932023
Deeptio: A deep thermal-inertial odometry with visual hallucination
MRU Saputra, PPB De Gusmao, CX Lu, Y Almalioglu, S Rosa, C Chen, ...
IEEE Robotics and Automation Letters 5 (2), 1672-1679, 2020
732020
Zerofl: Efficient on-device training for federated learning with local sparsity
X Qiu, J Fernandez-Marques, PPB Gusmao, Y Gao, T Parcollet, ND Lane
arXiv preprint arXiv:2208.02507, 2022
682022
Flower: A friendly federated learning framework
DJ Beutel, T Topal, A Mathur, X Qiu, J Fernandez-Marques, Y Gao, L Sani, ...
632022
DeepPCO: End-to-end Point Cloud Odometry through Deep Parallel Neural Network
W Wang, MRU Saputra, P Zhao, ...
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019
592019
Learning monocular visual odometry through geometry-aware curriculum learning
MRU Saputra, PPB De Gusmao, S Wang, A Markham, N Trigoni
2019 international conference on robotics and automation (ICRA), 3549-3555, 2019
562019
On-device federated learning with flower
A Mathur, DJ Beutel, PPB de Gusmao, J Fernandez-Marques, T Topal, ...
arXiv preprint arXiv:2104.03042, 2021
502021
Flower: A friendly federated learning research framework. arXiv 2020
DJ Beutel, T Topal, A Mathur, X Qiu, T Parcollet, PP de Gusmão, ND Lane
arXiv preprint arXiv:2007.14390, 2021
482021
End-to-end speech recognition from federated acoustic models
Y Gao, T Parcollet, S Zaiem, J Fernandez-Marques, PPB de Gusmao, ...
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and …, 2022
472022
Statistical modelling of outliers for fast visual search
S Lepsøy, G Francini, G Cordara, PPB de Gusmao
2011 IEEE International Conference on Multimedia and Expo, 1-6, 2011
452011
Graph-based thermal–inertial SLAM with probabilistic neural networks
MRU Saputra, CX Lu, PPB de Gusmao, B Wang, A Markham, N Trigoni
IEEE Transactions on Robotics 38 (3), 1875-1893, 2021
342021
Secure aggregation for federated learning in flower
KH Li, PPB de Gusmão, DJ Beutel, ND Lane
Proceedings of the 2nd ACM International Workshop on Distributed Machine …, 2021
322021
Radarloc: Learning to relocalize in fmcw radar
W Wang, PPB de Gusmão, B Yang, A Markham, N Trigoni
2021 IEEE International Conference on Robotics and Automation (ICRA), 5809-5815, 2021
292021
Method and system for comparing images
G Cordara, G Francini, S Lepsoy, PPB De Gusmao
US Patent 9,008,424, 2015
192015
L-dawa: Layer-wise divergence aware weight aggregation in federated self-supervised visual representation learning
YAU Rehman, Y Gao, PPB De Gusmão, M Alibeigi, J Shen, ND Lane
Proceedings of the IEEE/CVF international conference on computer vision …, 2023
172023
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20