Bhavya Kailkhura
Bhavya Kailkhura
Dirección de correo verificada de - Página principal
Citado por
Citado por
Automatic perturbation analysis for scalable certified robustness and beyond
K Xu, Z Shi, H Zhang, Y Wang, KW Chang, M Huang, B Kailkhura, X Lin, ...
Advances in Neural Information Processing Systems 33, 1129-1141, 2020
Anomalous example detection in deep learning: A survey
S Bulusu, B Kailkhura, B Li, PK Varshney, D Song
IEEE Access 8, 132330-132347, 2020
Mix-n-match: Ensemble and compositional methods for uncertainty calibration in deep learning
J Zhang, B Kailkhura, TYJ Han
International conference on machine learning, 11117-11128, 2020
A primer on zeroth-order optimization in signal processing and machine learning: Principals, recent advances, and applications
S Liu, PY Chen, B Kailkhura, G Zhang, AO Hero III, PK Varshney
IEEE Signal Processing Magazine 37 (5), 43-54, 2020
Zeroth-order stochastic variance reduction for nonconvex optimization
S Liu, B Kailkhura, PY Chen, P Ting, S Chang, L Amini
Advances in Neural Information Processing Systems 31 (2018): 3727-3737, 2018
Reliable and explainable machine-learning methods for accelerated material discovery
B Kailkhura, B Gallagher, S Kim, A Hiszpanski, TYJ Han
npj Computational Materials 5 (1), 108, 2019
Generative counterfactual introspection for explainable deep learning
S Liu, B Kailkhura, D Loveland, Y Han
2019 IEEE global conference on signal and information processing (GlobalSIP …, 2019
Explainable machine learning in materials science
X Zhong, B Gallagher, S Liu, B Kailkhura, A Hiszpanski, TYJ Han
npj computational materials 8 (1), 204, 2022
Distributed Bayesian detection in the presence of Byzantine data
B Kailkhura, YS Han, S Brahma, PK Varshney
IEEE transactions on signal processing 63 (19), 5250-5263, 2015
Data falsification attacks on consensus-based detection systems
B Kailkhura, S Brahma, PK Varshney
IEEE Transactions on Signal and Information Processing over Networks 3 (1 …, 2016
Trustllm: Trustworthiness in large language models
L Sun, Y Huang, H Wang, S Wu, Q Zhang, C Gao, Y Huang, W Lyu, ...
arXiv preprint arXiv:2401.05561, 2024
Multi-prize lottery ticket hypothesis: Finding accurate binary neural networks by pruning a randomly weighted network
J Diffenderfer, B Kailkhura
International Conference on Learning Representations. 2020., 2021
Benchmarking robustness of 3d point cloud recognition against common corruptions
J Sun, Q Zhang, B Kailkhura, Z Yu, C Xiao, ZM Mao
arXiv preprint arXiv:2201.12296, 2022
Mimicgan: Robust projection onto image manifolds with corruption mimicking
R Anirudh, JJ Thiagarajan, B Kailkhura, PT Bremer
International Journal of Computer Vision 128, 2459-2477, 2020
On the design of black-box adversarial examples by leveraging gradient-free optimization and operator splitting method
P Zhao, S Liu, PY Chen, N Hoang, K Xu, B Kailkhura, X Lin
Proceedings of the IEEE/CVF International Conference on Computer Vision, 121-130, 2019
Treeview: Peeking into deep neural networks via feature-space partitioning
JJ Thiagarajan, B Kailkhura, P Sattigeri, KN Ramamurthy
arXiv preprint arXiv:1611.07429, 2016
Nanomaterial synthesis insights from machine learning of scientific articles by extracting, structuring, and visualizing knowledge
AM Hiszpanski, B Gallagher, K Chellappan, P Li, S Liu, H Kim, J Han, ...
Journal of chemical information and modeling 60 (6), 2876-2887, 2020
A Winning Hand: Compressing Deep Networks Can Improve Out-Of-Distribution Robustness
J Diffenderfer, BR Bartoldson, S Chaganti, J Zhang, B Kailkhura
NeurIPS 2021, 2021
Performance modeling under resource constraints using deep transfer learning
A Marathe, R Anirudh, N Jain, A Bhatele, J Thiagarajan, B Kailkhura, ...
Proceedings of the International Conference for High Performance Computing …, 2017
G-pate: Scalable differentially private data generator via private aggregation of teacher discriminators
Y Long, B Wang, Z Yang, B Kailkhura, A Zhang, C Gunter, B Li
Advances in Neural Information Processing Systems 34, 2965-2977, 2021
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20