Seguir
Bernhard Pfahringer
Bernhard Pfahringer
Professor of Computer Science, University of Waikato
Dirección de correo verificada de waikato.ac.nz - Página principal
Título
Citado por
Citado por
Año
The WEKA data mining software: an update
M Hall, E Frank, G Holmes, B Pfahringer, P Reutemann, IH Witten
ACM SIGKDD explorations newsletter 11 (1), 10-18, 2009
254502009
Classifier chains for multi-label classification
J Read, B Pfahringer, G Holmes, E Frank
Machine learning 85, 333-359, 2011
24702011
Moa: Massive online analysis, a framework for stream classification and clustering
A Bifet, G Holmes, B Pfahringer, P Kranen, H Kremer, T Jansen, T Seidl
Proceedings of the first workshop on applications of pattern analysis, 44-50, 2010
22912010
Classifier chains for multi-label classification
J Read, B Pfahringer, G Holmes, E Frank
Machine Learning and Knowledge Discovery in Databases: European Conference …, 2009
10602009
New ensemble methods for evolving data streams
A Bifet, G Holmes, B Pfahringer, R Kirkby, R Gavalda
Proceedings of the 15th ACM SIGKDD international conference on Knowledge …, 2009
8422009
Weka-a machine learning workbench for data mining
E Frank, M Hall, G Holmes, R Kirkby, B Pfahringer, IH Witten, L Trigg
Data mining and knowledge discovery handbook, 1269-1277, 2010
8312010
Multinomial naive bayes for text categorization revisited
AM Kibriya, E Frank, B Pfahringer, G Holmes
AI 2004: Advances in Artificial Intelligence: 17th Australian Joint …, 2005
6762005
Multi-label classification using ensembles of pruned sets
J Read, B Pfahringer, G Holmes
2008 eighth IEEE international conference on data mining, 995-1000, 2008
5952008
Meta-Learning by Landmarking Various Learning Algorithms.
B Pfahringer, H Bensusan, CG Giraud-Carrier
ICML, 743-750, 2000
5392000
Regularisation of neural networks by enforcing lipschitz continuity
H Gouk, E Frank, B Pfahringer, MJ Cree
Machine Learning 110, 393-416, 2021
5272021
Locally weighted naive bayes
E Frank, M Hall, B Pfahringer
arXiv preprint arXiv:1212.2487, 2012
5062012
Leveraging bagging for evolving data streams
A Bifet, G Holmes, B Pfahringer
Machine Learning and Knowledge Discovery in Databases: European Conference …, 2010
4722010
WEKA---Experiences with a Java Open-Source Project
RR Bouckaert, E Frank, MA Hall, G Holmes, B Pfahringer, P Reutemann, ...
The Journal of Machine Learning Research 11, 2533-2541, 2010
4662010
Active learning with drifting streaming data
I Žliobaitė, A Bifet, B Pfahringer, G Holmes
IEEE transactions on neural networks and learning systems 25 (1), 27-39, 2013
4482013
Smote for regression
L Torgo, RP Ribeiro, B Pfahringer, P Branco
Portuguese conference on artificial intelligence, 378-389, 2013
3762013
Machine learning for data streams: with practical examples in MOA
A Bifet, R Gavalda, G Holmes, B Pfahringer
MIT press, 2023
3602023
Meka: a multi-label/multi-target extension to weka
J Read, P Reutemann, B Pfahringer, G Holmes
Journal of Machine Learning Research 17 (21), 1-5, 2016
3342016
Winning the KDD99 classification cup: Bagged boosting
B Pfahringer
ACM SIGKDD Explorations Newsletter 1 (2), 65-66, 2000
3292000
Multiclass alternating decision trees
G Holmes, B Pfahringer, R Kirkby, E Frank, M Hall
Machine Learning: ECML 2002: 13th European Conference on Machine Learning …, 2002
2662002
Efficient online evaluation of big data stream classifiers
A Bifet, G de Francisci Morales, J Read, G Holmes, B Pfahringer
Proceedings of the 21th ACM SIGKDD international conference on knowledge …, 2015
2332015
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20