Dequan Wang
Dequan Wang
Shanghai Jiao Tong University | Shanghai AI Laboratory
Dirección de correo verificada de - Página principal
Citado por
Citado por
Objects as points
X Zhou, D Wang, P Krähenbühl
arXiv preprint arXiv:1904.07850, 2019
Deep layer aggregation
F Yu, D Wang, E Shelhamer, T Darrell
Proceedings of the IEEE conference on computer vision and pattern …, 2018
Visda: The visual domain adaptation challenge
X Peng, B Usman, N Kaushik, J Hoffman, D Wang, K Saenko
arXiv preprint arXiv:1710.06924, 2017
Tent: Fully test-time adaptation by entropy minimization
D Wang, E Shelhamer, S Liu, B Olshausen, T Darrell
arXiv preprint arXiv:2006.10726, 2020
Fcns in the wild: Pixel-level adversarial and constraint-based adaptation
J Hoffman, D Wang, F Yu, T Darrell
arXiv preprint arXiv:1612.02649, 2016
Multiple granularity descriptors for fine-grained categorization
D Wang, Z Shen, J Shao, W Zhang, X Xue, Z Zhang
Proceedings of the IEEE international conference on computer vision, 2399-2406, 2015
Joint monocular 3D vehicle detection and tracking
HN Hu, QZ Cai, D Wang, J Lin, M Sun, P Krahenbuhl, T Darrell, F Yu
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019
Contrastive Test-Time Adaptation
D Chen, D Wang, T Darrell, S Ebrahimi
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022
Deep object-centric policies for autonomous driving
D Wang, C Devin, QZ Cai, F Yu, T Darrell
2019 International Conference on Robotics and Automation (ICRA), 8853-8859, 2019
Monocular plan view networks for autonomous driving
D Wang, C Devin, QZ Cai, P Krähenbühl, T Darrell
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2019
Weakly supervised semantic segmentation for social images
W Zhang, S Zeng, D Wang, X Xue
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2015
Back to the Source: Diffusion-Driven Adaptation To Test-Time Corruption
J Gao, J Zhang, X Liu, T Darrell, E Shelhamer, D Wang
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023
Actnn: Reducing training memory footprint via 2-bit activation compressed training
J Chen, L Zheng, Z Yao, D Wang, I Stoica, M Mahoney, J Gonzalez
International Conference on Machine Learning, 1803-1813, 2021
Codenet: Efficient deployment of input-adaptive object detection on embedded fpgas
Q Huang, D Wang, Z Dong, Y Gao, Y Cai, T Li, B Wu, K Keutzer, ...
The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays …, 2021
BEV-Seg: Bird's Eye View Semantic Segmentation Using Geometry and Semantic Point Cloud
MH Ng, K Radia, J Chen, D Wang, I Gog, JE Gonzalez
arXiv preprint arXiv:2006.11436, 2020
Blurring the line between structure and learning to optimize and adapt receptive fields
E Shelhamer, D Wang, T Darrell
arXiv preprint arXiv:1904.11487, 2019
Fighting Gradients with Gradients: Dynamic Defenses against Adversarial Attacks
D Wang, A Ju, E Shelhamer, D Wagner, T Darrell
arXiv preprint arXiv:2105.08714, 2021
Text-Guided Foundation Model Adaptation for Pathological Image Classification
Y Zhang, J Gao, M Zhou, X Wang, Y Qiao, S Zhang, D Wang
International Conference on Medical Image Computing and Computer-Assisted …, 2023
GACT: Activation compressed training for generic network architectures
X Liu, L Zheng, D Wang, Y Cen, W Chen, X Han, J Chen, Z Liu, J Tang, ...
International Conference on Machine Learning, 14139-14152, 2022
A Real-world Dataset and Benchmark For Foundation Model Adaptation in Medical Image Classification
D Wang, X Wang, L Wang, M Li, Q Da, X Liu, X Gao, J Shen, J He, T Shen, ...
Scientific Data 10 (1), 574, 2023
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20