Seguir
Xiaodong Liu
Xiaodong Liu
Microsoft Research, Redmond
Dirección de correo verificada de microsoft.com - Página principal
Título
Citado por
Citado por
Año
Deberta: Decoding-enhanced bert with disentangled attention
P He, X Liu, J Gao, W Chen
arXiv preprint arXiv:2006.03654, 2020
25032020
On the variance of the adaptive learning rate and beyond
L Liu, H Jiang, P He, W Chen, X Liu, J Gao, J Han
arXiv preprint arXiv:1908.03265, 2019
22422019
Domain-specific language model pretraining for biomedical natural language processing
Y Gu, R Tinn, H Cheng, M Lucas, N Usuyama, X Liu, T Naumann, J Gao, ...
ACM Transactions on Computing for Healthcare (HEALTH) 3 (1), 1-23, 2021
18522021
Unified Language Model Pre-training for Natural Language Understanding and Generation
L Dong, N Yang, W Wang, F Wei, X Liu, Y Wang, J Gao, M Zhou, HW Hon
arXiv preprint arXiv:1905.03197, 2019
17692019
Smart: Robust and efficient fine-tuning for pre-trained natural language models through principled regularized optimization
H Jiang, P He, W Chen, X Liu, J Gao, T Zhao
arXiv preprint arXiv:1911.03437, 2019
1768*2019
Ms marco: A human-generated machine reading comprehension dataset
T Nguyen, M Rosenberg, X Song, J Gao, S Tiwary, R Majumder, L Deng
16272016
Multi-task deep neural networks for natural language understanding
X Liu, P He, W Chen, J Gao
arXiv preprint arXiv:1901.11504, 2019
14402019
MS MARCO: A human generated machine reading comprehension dataset
T Nguyen, M Rosenberg, X Song, J Gao, S Tiwary, R Majumder, L Deng
CoCo@ NIPS, 2016
730*2016
Rat-sql: Relation-aware schema encoding and linking for text-to-sql parsers
B Wang, R Shin, X Liu, O Polozov, M Richardson
arXiv preprint arXiv:1911.04942, 2019
5382019
Representation learning using multi-task deep neural networks for semantic classification and information retrieval
X Liu, J Gao, X He, L Deng, K Duh, YY Wang
5022015
Cyclical annealing schedule: A simple approach to mitigating kl vanishing
H Fu, C Li, X Liu, J Gao, A Celikyilmaz, L Carin
arXiv preprint arXiv:1903.10145, 2019
4222019
Unilmv2: Pseudo-masked language models for unified language model pre-training
H Bao, L Dong, F Wei, W Wang, N Yang, X Liu, Y Wang, J Gao, S Piao, ...
International conference on machine learning, 642-652, 2020
4112020
Phi-3 technical report: A highly capable language model locally on your phone
M Abdin, SA Jacobs, AA Awan, J Aneja, A Awadallah, H Awadalla, ...
arXiv preprint arXiv:2404.14219, 2024
2902024
Record: Bridging the gap between human and machine commonsense reading comprehension
S Zhang, X Liu, J Liu, J Gao, K Duh, B Van Durme
arXiv preprint arXiv:1810.12885, 2018
2702018
Understanding the difficulty of training transformers
L Liu, X Liu, J Gao, W Chen, J Han
arXiv preprint arXiv:2004.08249, 2020
2692020
Stochastic answer networks for machine reading comprehension
X Liu, Y Shen, K Duh, J Gao
arXiv preprint arXiv:1712.03556, 2017
2382017
Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding
X Liu, P He, W Chen, J Gao
arXiv preprint arXiv:1904.09482, 2019
2132019
Generation-augmented retrieval for open-domain question answering
Y Mao, P He, X Liu, Y Shen, J Gao, J Han, W Chen
arXiv preprint arXiv:2009.08553, 2020
2102020
Adversarial training for large neural language models
X Liu, H Cheng, P He, W Chen, Y Wang, H Poon, J Gao
arXiv preprint arXiv:2004.08994, 2020
1842020
Tuning large neural networks via zero-shot hyperparameter transfer
G Yang, E Hu, I Babuschkin, S Sidor, X Liu, D Farhi, N Ryder, J Pachocki, ...
Advances in Neural Information Processing Systems 34, 17084-17097, 2021
183*2021
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20