Seguir
Vinicius Zambaldi
Vinicius Zambaldi
Google Deepmind
Dirección de correo verificada de google.com
Título
Citado por
Citado por
Año
Relational inductive biases, deep learning, and graph networks
PW Battaglia, JB Hamrick, V Bapst, A Sanchez-Gonzalez, V Zambaldi, ...
arXiv preprint arXiv:1806.01261, 2018
39272018
Value-decomposition networks for cooperative multi-agent learning
P Sunehag, G Lever, A Gruslys, WM Czarnecki, V Zambaldi, M Jaderberg, ...
arXiv preprint arXiv:1706.05296, 2017
19382017
Multi-agent reinforcement learning in sequential social dilemmas
JZ Leibo, V Zambaldi, M Lanctot, J Marecki, T Graepel
arXiv preprint arXiv:1702.03037, 2017
9362017
A unified game-theoretic approach to multiagent reinforcement learning
M Lanctot, V Zambaldi, A Gruslys, A Lazaridou, K Tuyls, J Pérolat, D Silver, ...
Advances in neural information processing systems 30, 2017
7782017
Deep reinforcement learning with relational inductive biases
V Zambaldi, D Raposo, A Santoro, V Bapst, Y Li, I Babuschkin, K Tuyls, ...
International conference on learning representations, 2019
527*2019
OpenSpiel: A framework for reinforcement learning in games
M Lanctot, E Lockhart, JB Lespiau, V Zambaldi, S Upadhyay, J Pérolat, ...
arXiv preprint arXiv:1908.09453, 2019
2802019
A multi-agent reinforcement learning model of common-pool resource appropriation
J Perolat, JZ Leibo, V Zambaldi, C Beattie, K Tuyls, T Graepel
Advances in neural information processing systems 30, 2017
2332017
Relational inductive biases, deep learning, and graph networks. arXiv 2018
PW Battaglia, JB Hamrick, V Bapst, A Sanchez-Gonzalez, V Zambaldi, ...
arXiv preprint arXiv:1806.01261, 2018
2212018
Actor-critic policy optimization in partially observable multiagent environments
S Srinivasan, M Lanctot, V Zambaldi, J Pérolat, K Tuyls, R Munos, ...
Advances in neural information processing systems 31, 2018
1722018
Compile: Compositional imitation learning and execution
T Kipf, Y Li, H Dai, V Zambaldi, A Sanchez-Gonzalez, E Grefenstette, ...
International Conference on Machine Learning, 3418-3428, 2019
1432019
Dawn of the selfie era: The whos, wheres, and hows of selfies on Instagram
F Souza, D de Las Casas, V Flores, SB Youn, M Cha, D Quercia, ...
Proceedings of the 2015 ACM on conference on online social networks, 221-231, 2015
1422015
Relational forward models for multi-agent learning
A Tacchetti, HF Song, PAM Mediano, V Zambaldi, NC Rabinowitz, ...
arXiv preprint arXiv:1809.11044, 2018
902018
The spatial memory pipeline: a model of egocentric to allocentric understanding in mammalian brains
B Uria, B Ibarz, A Banino, V Zambaldi, D Kumaran, D Hassabis, C Barry, ...
BioRxiv, 2020.11. 11.378141, 2020
382020
Memo: A deep network for flexible combination of episodic memories
A Banino, AP Badia, R Köster, MJ Chadwick, V Zambaldi, D Hassabis, ...
arXiv preprint arXiv:2001.10913, 2020
382020
The advantage regret-matching actor-critic
A Gruslys, M Lanctot, R Munos, F Timbers, M Schmid, J Perolat, D Morrill, ...
arXiv preprint arXiv:2008.12234, 2020
262020
Graph neural network systems for behavior prediction and reinforcement learning in multple agent environments
H Song, A Tacchetti, PW Battaglia, V Zambaldi
US Patent App. 17/054,632, 2021
222021
Compositional imitation learning: Explaining and executing one task at a time
T Kipf, Y Li, H Dai, V Zambaldi, E Grefenstette, P Kohli, P Battaglia
arXiv preprint arXiv:1812.01483, 2018
182018
De novo design of high-affinity protein binders with AlphaProteo
V Zambaldi, D La, AE Chu, H Patani, AE Danson, TOC Kwan, T Frerix, ...
arXiv preprint arXiv:2409.08022, 2024
152024
Lightweight contextual ranking of city pictures: urban sociology to the rescue
V Zambaldi, J Pesce, D Quercia, V Almeida
Proceedings of the International AAAI Conference on Web and Social Media 8 …, 2014
142014
Reinforcement learning using a relational network for generating data encoding relationships between entities in an environment
Y Li, VC Bapst, V Zambaldi, DN Raposo, AA Santoro
US Patent App. 18/168,123, 2023
2023
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20