Seguir
Hamed Masnadi-Shirazi
Hamed Masnadi-Shirazi
Afiliación desconocida
Dirección de correo verificada de ucsd.edu - Página principal
Título
Citado por
Citado por
Año
On the design of loss functions for classification: theory, robustness to outliers, and savageboost
H Masnadi-Shirazi, N Vasconcelos
Advances in neural information processing systems 21, 2008
2612008
Cost-sensitive support vector machines
A Iranmehr, H Masnadi-Shirazi, N Vasconcelos
Neurocomputing 343, 50-64, 2019
2322019
Cost-sensitive boosting
H Masnadi-Shirazi, N Vasconcelos
IEEE Transactions on pattern analysis and machine intelligence 33 (2), 294-309, 2010
2232010
Asymmetric boosting
H Masnadi-Shirazi, N Vasconcelos
Proceedings of the 24th international conference on Machine learning, 609-619, 2007
1262007
Risk minimization, probability elicitation, and cost-sensitive SVMs.
H Masnadi-Shirazi, N Vasconcelos
ICML, 759-766, 2010
1132010
On the design of robust classifiers for computer vision
H Masnadi-Shirazi, V Mahadevan, N Vasconcelos
2010 IEEE Computer Society Conference on Computer Vision and Pattern …, 2010
912010
Taylorboost: First and second-order boosting algorithms with explicit margin control
MJ Saberian, H Masnadi-Shirazi, N Vasconcelos
CVPR 2011, 2929-2934, 2011
382011
High detection-rate cascades for real-time object detection
H Masnadi-Shirazi, N Vasconcelos
2007 IEEE 11th International Conference on Computer Vision, 1-6, 2007
372007
A Step by Step Mathematical Derivation and Tutorial on Kalman Filters
H Masnadi-Shirazi, A Masnadi-Shirazi, MA Dastgheib
arXiv preprint arXiv:1910.03558, 2019
162019
A view of margin losses as regularizers of probability estimates
H Masnadi-Shirazi, N Vasconcelos
The Journal of Machine Learning Research 16 (1), 2751-2795, 2015
162015
Variable margin losses for classifier design
H Masnadi-Shirazi, N Vasconcelos
Advances in Neural Information Processing Systems 23, 2010
122010
The design of Bayes consistent loss functions for classification
H Masnadi-Shirazi
UC San Diego, 2011
112011
Adaboost face detection
H Masnadi-Shirazi
Computer Engineering, 2018
42018
Strictly proper kernel scoring rules and divergences with an application to kernel two-sample hypothesis testing
H Masnadi-Shirazi
arXiv preprint arXiv:1704.02578, 2017
22017
Combining Forecasts Using Ensemble Learning
H Masnadi-Shirazi
arXiv preprint arXiv:1707.02430, 2017
12017
Refinement revisited with connections to Bayes error, conditional entropy and calibrated classifiers
H Masnadi-Shirazi
arXiv preprint arXiv:1303.2517, 2013
12013
Kernel Two-Sample Hypothesis Testing Using Kernel Set Classification
H Masnadi-Shirazi
arXiv preprint arXiv:1706.05612, 2017
2017
Minimizing the Minimum Risk with Applications to Feature Selection, Classification and Kernel Two-Sample Hypothesis Testing
H Masnadi-Shirazi
Predictive Filters Analysis: a supervised approach to analyze EEG data
J Rapela, KK Delgado, S Makeig, H Masnadi-Shirazi, N Vasconcelos
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–19