Asynchronous methods for deep reinforcement learning V Mnih, A Puigdomenech Badia, M Mirza, A Graves, T Lillicrap, T Harley, ... International conference on machine learning, 1928-1937, 2016 | 12077 | 2016 |
Gemini: a family of highly capable multimodal models G Team, R Anil, S Borgeaud, JB Alayrac, J Yu, R Soricut, J Schalkwyk, ... arXiv preprint arXiv:2312.11805, 2023 | 2192 | 2023 |
Hybrid computing using a neural network with dynamic external memory A Graves, G Wayne, M Reynolds, T Harley, I Danihelka, ... Nature 538 (7626), 471-476, 2016 | 1988 | 2016 |
Imagination-augmented agents for deep reinforcement learning S Racanière, T Weber, D Reichert, L Buesing, A Guez, ... Advances in neural information processing systems 30, 2017 | 732* | 2017 |
Agent57: Outperforming the atari human benchmark AP Badia, B Piot, S Kapturowski, P Sprechmann, A Vitvitskyi, ZD Guo, ... International conference on machine learning, 507-517, 2020 | 699 | 2020 |
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context G Team, P Georgiev, VI Lei, R Burnell, L Bai, A Gulati, G Tanzer, ... arXiv preprint arXiv:2403.05530, 2024 | 689 | 2024 |
Neural episodic control A Pritzel, B Uria, S Srinivasan, AP Badia, O Vinyals, D Hassabis, ... International conference on machine learning, 2827-2836, 2017 | 430 | 2017 |
Never give up: Learning directed exploration strategies AP Badia, P Sprechmann, A Vitvitskyi, D Guo, B Piot, S Kapturowski, ... arXiv preprint arXiv:2002.06038, 2020 | 367 | 2020 |
Memory-based parameter adaptation P Sprechmann, SM Jayakumar, JW Rae, A Pritzel, AP Badia, B Uria, ... arXiv preprint arXiv:1802.10542, 2018 | 119 | 2018 |
The CLRS algorithmic reasoning benchmark P Veličković, AP Badia, D Budden, R Pascanu, A Banino, M Dashevskiy, ... International Conference on Machine Learning, 22084-22102, 2022 | 95 | 2022 |
Generalization of reinforcement learners with working and episodic memory M Fortunato, M Tan, R Faulkner, S Hansen, A Puigdomènech Badia, ... Advances in neural information processing systems 32, 2019 | 76 | 2019 |
Asynchronous methods for deep reinforcement learning. arXiv 2016 V Mnih, AP Badia, M Mirza, A Graves, TP Lillicrap, T Harley, D Silver, ... arXiv preprint arXiv:1602.01783, 1783 | 70 | 1783 |
Retrieval-augmented reinforcement learning A Goyal, A Friesen, A Banino, T Weber, NR Ke, AP Badia, A Guez, ... International Conference on Machine Learning, 7740-7765, 2022 | 53 | 2022 |
International conference on machine learning V Mnih, AP Badia, M Mirza, A Graves, T Lillicrap, T Harley, D Silver, ... JMLR: W&CP, 2016 | 49 | 2016 |
Memo: A deep network for flexible combination of episodic memories A Banino, AP Badia, R Köster, MJ Chadwick, V Zambaldi, D Hassabis, ... arXiv preprint arXiv:2001.10913, 2020 | 38 | 2020 |
Human-level Atari 200x faster S Kapturowski, V Campos, R Jiang, N Rakićević, H van Hasselt, ... arXiv preprint arXiv:2209.07550, 2022 | 35 | 2022 |
Beyond fine-tuning: Transferring behavior in reinforcement learning V Campos, P Sprechmann, S Hansen, A Barreto, S Kapturowski, ... arXiv preprint arXiv:2102.13515, 2021 | 30 | 2021 |
Asynchronous deep reinforcement learning V Mnih, AP Badia, AB Graves, TJA Harley, D Silver, K Kavukcuoglu US Patent 10,936,946, 2021 | 24 | 2021 |
Coverage as a principle for discovering transferable behavior in reinforcement learning V Campos, P Sprechmann, SS Hansen, A Barreto, C Blundell, A Vitvitskyi, ... | 9 | 2021 |
Neural episodic control B Uria-Martínez, A Pritzel, C Blundell, AP Badia US Patent 10,664,753, 2020 | 5 | 2020 |