Seguir
Xi Peng
Xi Peng
Assistant Professor, Computer Science, University of Delaware
Dirección de correo verificada de udel.edu - Página principal
Título
Citado por
Citado por
Año
Semantic Graph Convolutional Networks for 3D Human Pose Regression
L Zhao, X Peng, Y Tian, M Kapadia, DN Metaxas
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019
5782019
A generative adversarial approach for zero-shot learning from noisy texts
Y Zhu, M Elhoseiny, B Liu, X Peng, A Elgammal
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018
4582018
Learning to Learn Single Domain Generalization
F Qiao, L Zhao, X Peng
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 12556-12565, 2020
4372020
Jointly optimize data augmentation and network training: Adversarial data augmentation
X Peng, Z Tang, F Yang, RS Feris, D Metaxas
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018
257*2018
SMIL: Multimodal Learning with Severely Missing Modality
M Ma, J Ren, L Zhao, S Tulyakov, C Wu, X Peng
Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI), 2021
1882021
Reconstruction-based disentanglement for pose-invariant face recognition
X Peng, X Yu, K Sohn, DN Metaxas, M Chandraker
Proceedings of the IEEE International Conference on Computer Vision (ICCV …, 2017
1822017
A recurrent encoder-decoder for sequential face alignment
X Peng, RS Feris, X Wang, DN Metaxs
European Conference on Computer Vision (Best Student Paper Runner-up), 38-56, 2016
173*2016
CR-GAN: learning complete representations for multi-view generation
Y Tian, X Peng, L Zhao, S Zhang, DN Metaxas
International Joint Conference on Artificial Intelligence (IJCAI), 2018
1642018
Maximum-Entropy Adversarial Data Augmentation for Improved Generalization and Robustness
L Zhao, T Liu, X Peng, D Metaxas
Conference on Neural Information Processing Systems (NeurIPS), 2020
1622020
A good image generator is what you need for high-resolution video synthesis
Y Tian, J Ren, M Chai, K Olszewski, X Peng, DN Metaxas, S Tulyakov
The International Conference on Learning Representations (ICLR Spotlight), 2021
1602021
Quantized densely connected u-nets for efficient landmark localization
Z Tang, X Peng, S Geng, L Wu, S Zhang, D Metaxas
Proceedings of the European conference on computer vision (ECCV), 339-354, 2018
1572018
Semantic-Guided Multi-Attention Localization for Zero-Shot Learning
Y Zhu, J Xie, Z Tang, X Peng, A Elgammal
Advances in Neural Information Processing Systems (NeurIPS), 14943-14953, 2019
1482019
Construct dynamic graphs for hand gesture recognition via spatial-temporal attention
Y Chen, L Zhao, X Peng, J Yuan, DN Metaxas
British Machine Vision Conference (BMVC), 2019
1122019
Learning to forecast and refine residual motion for image-to-video generation
L Zhao, X Peng, Y Tian, M Kapadia, D Metaxas
Proceedings of the European conference on computer vision (ECCV), 387-403, 2018
1092018
Are multimodal transformers robust to missing modality?
M Ma, J Ren, L Zhao, D Testuggine, X Peng
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022
1072022
Knowledge as Priors: Cross-Modal Knowledge Generalization for Datasets without Superior Knowledge
L Zhao, X Peng, Y Chen, M Kapadia, DN Metaxas
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6528-6537, 2020
732020
A computer vision based method for 3D posture estimation of symmetrical lifting
R Mehrizi, X Peng, X Xu, S Zhang, D Metaxas, K Li
Journal of biomechanics (JoB) 69, 40-46, 2018
682018
Towards Efficient U-Nets: A Coupled and Quantized Approach
Z Tang, X Peng, K Li, DN Metaxas
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2019
662019
Piefa: Personalized incremental and ensemble face alignment
X Peng, S Zhang, Y Yang, DN Metaxas
Proceedings of the IEEE international conference on computer vision (ICCV …, 2015
552015
CU-net: coupled U-nets
Z Tang, X Peng, S Geng, Y Zhu, DN Metaxas
British Machine Vision Conference (BMVC Oral), 2018
522018
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20