Seguir
Andrew Lowy
Andrew Lowy
Postdoctoral Research Associate, University of Wisconsin-Madison
Dirección de correo verificada de usc.edu - Página principal
Título
Citado por
Citado por
Año
Efficient search of first-order nash equilibria in nonconvex-concave smooth min-max problems
DM Ostrovskii, A Lowy, M Razaviyayn
SIAM Journal on Optimization 31 (4), 2508-2538, 2021
1052021
A Stochastic Optimization Framework for Fair Risk Minimization
A Lowy, S Baharlouei, R Pavan, M Razaviyayn, A Beirami
Transactions on Machine Learning Research, 2022
32*2022
Private federated learning without a trusted server: Optimal algorithms for convex losses
A Lowy, M Razaviyayn
The Eleventh International Conference on Learning Representations (ICLR 2023), 2023
29*2023
Private non-convex federated learning without a trusted server
A Lowy, A Ghafelebashi, M Razaviyayn
International Conference on Artificial Intelligence and Statistics (AISTATS …, 2023
192023
Stochastic Differentially Private and Fair Learning
A Lowy, D Gupta, M Razaviyayn
The Eleventh International Conference on Learning Representations (ICLR 2023), 2023
102023
Output perturbation for differentially private convex optimization with improved population loss bounds, runtimes and applications to private adversarial training
A Lowy, M Razaviyayn
The Second AAAI Workshop on Privacy-Preserving Artificial Intelligence (PPAI-21), 2021
102021
Optimal differentially private model training with public data
A Lowy, Z Li, T Huang, M Razaviyayn
Forty-first International Conference on Machine Learning (ICML 2024), 2024
9*2024
Private stochastic optimization with large worst-case lipschitz parameter: Optimal rates for (non-smooth) convex losses and extension to non-convex losses
A Lowy, M Razaviyayn
International Conference on Algorithmic Learning Theory (ALT 2023), 986-1054, 2023
82023
Why Does Differential Privacy with Large Epsilon Defend Against Practical Membership Inference Attacks?
A Lowy, Z Li, J Liu, T Koike-Akino, K Parsons, Y Wang
The 5th AAAI Workshop on Privacy-Preserving Artificial Intelligence (PPAI-24), 2024
32024
How to Make the Gradients Small Privately: Improved Rates for Differentially Private Non-Convex Optimization
A Lowy, J Ullman, SJ Wright
Forty-first International Conference on Machine Learning (ICML 2024), 2024
12024
Differentially Private and Fair Optimization for Machine Learning: Tight Error Bounds and Efficient Algorithms
A Lowy
University of Southern California, 2023
12023
Exploring User-level Gradient Inversion with a Diffusion Prior
Z Li, A Lowy, J Liu, T Koike-Akino, B Malin, K Parsons, Y Wang
arXiv preprint arXiv:2409.07291, 2024
2024
Analyzing Inference Privacy Risks Through Gradients in Machine Learning
Z Li, A Lowy, J Liu, T Koike-Akino, K Parsons, B Malin, Y Wang
The ACM Conference on Computer and Communications Security (CCS) 2024, 2024
2024
Private Heterogeneous Federated Learning Without a Trusted Server Revisited: Error-Optimal and Communication-Efficient Algorithms for Convex Losses
C Gao, A Lowy, X Zhou, SJ Wright
Forty-first International Conference on Machine Learning (ICML 2024), 2024
2024
Efficient Differentially Private Fine-Tuning of Diffusion Models
J Liu, A Lowy, T Koike-Akino, K Parsons, Y Wang
International Conference on Machine Learning (ICML) Next Generation of AI …, 2024
2024
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–15