James Johndrow
James Johndrow
Assistant Professor, Department of Statistics, University of Pennsylvania
Dirección de correo verificada de
Citado por
Citado por
The Type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis
SA Stanley, JE Johndrow, P Manzanillo, JS Cox
The Journal of Immunology 178 (5), 3143-3152, 2007
Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin are SOCS-2 dependent
FS Machado, JE Johndrow, L Esper, A Dias, A Bafica, CN Serhan, ...
Nature medicine 12 (3), 330-334, 2006
An algorithm for removing sensitive information
JE Johndrow, K Lum
The Annals of Applied Statistics 13 (1), 189-220, 2019
Coordination of microtubule and microfilament dynamics by Drosophila Rho1, Spire and Cappuccino
AE Rosales-Nieves, JE Johndrow, LC Keller, CR Magie, DM Pinto-Santini, ...
Nature cell biology 8 (4), 367-376, 2006
Scalable approximate MCMC algorithms for the horseshoe prior
J Johndrow, P Orenstein, A Bhattacharya
Journal of Machine Learning Research 21 (73), 1-61, 2020
Sisyphus, the Drosophila myosin XV homolog, traffics within filopodia transporting key sensory and adhesion cargos
R Liu, S Woolner, JE Johndrow, D Metzger, A Flores, SM Parkhurst
Oxford University Press for The Company of Biologists Limited 135 (1), 53-63, 2008
MCMC for imbalanced categorical data
JE Johndrow, A Smith, N Pillai, DB Dunson
Journal of the American Statistical Association, 2019
The Hastings algorithm at fifty
DB Dunson, JE Johndrow
Biometrika 107 (1), 1-23, 2020
Rho GTPase function in flies: insights from a developmental and organismal perspective
JE Johndrow, CR Magie, SM Parkhurst
Biochemistry and cell biology 82 (6), 643-657, 2004
Tensor decompositions and sparse log-linear models
JE Johndrow, A Bhattacharya, DB Dunson
Annals of statistics 45 (1), 1, 2017
Error bounds for approximations of Markov chains used in Bayesian sampling
JE Johndrow, JC Mattingly
arXiv preprint arXiv:1711.05382, 2017
Approximations of Markov chains and high-dimensional Bayesian inference
JE Johndrow, JC Mattingly, S Mukherjee, D Dunson
arXiv preprint arXiv:1508.03387, 2015
Scaling up data augmentation MCMC via calibration
LL Duan, JE Johndrow, DB Dunson
Journal of Machine Learning Research 19 (64), 1-34, 2018
Diagonal orthant multinomial probit models
J Johndrow, D Dunson, K Lum
Artificial intelligence and statistics, 29-38, 2013
No free lunch for approximate MCMC
JE Johndrow, NS Pillai, A Smith
arXiv preprint arXiv:2010.12514, 2020
Scalable MCMC for Bayes shrinkage priors
JE Johndrow, P Orenstein, A Bhattacharya
arXiv preprint arXiv:1705.00841, 0162-8828, 2017
Removing the influence of group variables in high-dimensional predictive modelling
E Aliverti, K Lum, JE Johndrow, DB Dunson
Journal of the Royal Statistical Society Series A: Statistics in Society 184 …, 2021
Estimating the number of SARS-CoV-2 infections and the impact of mitigation policies in the United States
J Johndrow, P Ball, M Gargiulo, K Lum
Harvard Data Sci. Rev 10, 2020
Optimal approximating Markov chains for Bayesian inference
JE Johndrow, JC Mattingly, S Mukherjee, D Dunson
arXiv preprint arXiv:1508.03387, 2015
Drosophila Rho-kinase (DRok) is required for tissue morphogenesis in diverse compartments of the egg chamber during oogenesis
V Verdier, JE Johndrow, M Betson, GC Chen, DA Hughes, SM Parkhurst, ...
Developmental biology 297 (2), 417-432, 2006
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20