Seguir
Ramon Viñas Torné
Ramon Viñas Torné
Dirección de correo verificada de cam.ac.uk
Título
Citado por
Citado por
Año
Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis
Y Fu, AW Jung, RV Torne, S Gonzalez, H Vöhringer, A Shmatko, LR Yates, ...
Nature cancer 1 (8), 800-810, 2020
5332020
Single Nucleotide Polymorphism relevance learning with Random Forests for Type 2 diabetes risk prediction
B López, F Torrent-Fontbona, R Viñas, JM Fernández-Real
Artificial intelligence in medicine 85, 43-49, 2018
962018
Graph representation forecasting of patient's medical conditions: Toward a digital twin
P Barbiero, R Vinas Torne, P Lió
Frontiers in genetics 12, 652907, 2021
712021
Graphein-a Python Library for Geometric Deep Learning and Network Analysis on Biomolecular Structures and Interaction Networks
AR Jamasb, RV Torné, EJ Ma, Y Du, C Harris, K Huang, D Hall, P Lio, ...
NeurIPS 2022, 2022
67*2022
The impact of imputation quality on machine learning classifiers for datasets with missing values
T Shadbahr, M Roberts, J Stanczuk, J Gilbey, P Teare, S Dittmer, ...
Communications Medicine 3 (1), 139, 2023
44*2023
Adversarial generation of gene expression data
R Viñas Torné, H Andrés-Terré, P Lio, K Bryson
Oxford University Press (OUP), 2021
38*2021
Deep learning enables fast and accurate imputation of gene expression
R Viñas, T Azevedo, ER Gamazon, P Liò
Frontiers in genetics 12, 624128, 2021
25*2021
Hypergraph factorization for multi-tissue gene expression imputation
R Viñas, CK Joshi, D Georgiev, P Lin, B Dumitrascu, ER Gamazon, P Liò
Nature machine intelligence 5 (7), 739-753, 2023
222023
gRNAde: Geometric Deep Learning for 3D RNA inverse design
CK Joshi, AR Jamasb, R Viñas, C Harris, S Mathis, A Morehead, R Anand, ...
bioRxiv, 2024
122024
Handling missing phenotype data with random forests for diabetes risk prognosis
B López Ibáñez, R Vinas, F Torrent-Fontbona, JM Fernández-Real Lemos
© López, B., Herrero, P., Martin, C.(eds).(2016). AID: Artificial …, 2016
52016
Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases
P Scherer, M Trębacz, N Simidjievski, R Viñas, Z Shams, HA Terre, ...
Bioinformatics 38 (5), 1320-1327, 2022
42022
NARTI: Neural Algorithmic Reasoning for Trajectory Inference
D Georgiev, R Vinas, S Considine, B Dumitrascu, P Lio
32023
Multi-state rna design with geometric multi-graph neural networks
CK Joshi, AR Jamasb, R Viñas, C Harris, S Mathis, P Liò
ICML 2023 Workshop on Computation Biology, 2023
32023
Discovering cancer driver genes and pathways using stochastic block model graph neural networks
V Fanfani, RV Torne, P Lio’, G Stracquadanio
bioRxiv, 2021.06. 29.450342, 2021
32021
Attentional Meta-learners for Few-shot Polythetic Classification
BJ Day, RV Torné, N Simidjievski, P Lio
International Conference on Machine Learning, 4867-4889, 2022
2*2022
Improving Classification and Data Imputation for Single-Cell Transcriptomics with Graph Neural Networks
HB Li, RV Torné, P Lio
NeurIPS 2022 AI for Science: Progress and Promises, 2022
22022
An investigation of pre-upsampling generative modelling and generative adversarial networks in audio super resolution
J King, RV Torné, A Campbell, P Liò
arXiv preprint arXiv:2109.14994, 2021
22021
Graph representation learning on tissue-specific multi-omics
A Amor, P Lio, V Singh, RV Torné, HA Terre
arXiv preprint arXiv:2107.11856, 2021
22021
Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nature Cancer 1 (8)(July 2020)
Y Fu, AW Jung, RV Torne, S Gonzalez, H Vöhringer, A Shmatko, L Yates, ...
2
Graph Representation Learning Strategies for Omics Data: A Case Study on Parkinson's Disease
EG de Lope, S Deshpande, RV Torné, P Liò, E Glaab, S Bordas
arXiv preprint arXiv:2406.14442, 2024
12024
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20