Seguir
Tommaso Fornaciari
Tommaso Fornaciari
Dirección de correo verificada de unibocconi.it
Título
Citado por
Citado por
Año
Learning from disagreement: A survey
AN Uma, T Fornaciari, D Hovy, S Paun, B Plank, M Poesio
Journal of Artificial Intelligence Research 72, 1385-1470, 2021
1652021
Beyond black & white: Leveraging annotator disagreement via soft-label multi-task learning
T Fornaciari, A Uma, S Paun, B Plank, D Hovy, M Poesio
Proceedings of the 2021 Conference of the North American Chapter of the …, 2021
1132021
Automatic deception detection in Italian court cases
T Fornaciari, M Poesio
Artificial intelligence and law 21, 303-340, 2013
1092013
We need to consider disagreement in evaluation
V Basile, M Fell, T Fornaciari, D Hovy, S Paun, B Plank, M Poesio, A Uma
Proceedings of the 1st workshop on benchmarking: past, present and future, 15-21, 2021
1082021
Automatic detection of verbal deception
E Fitzpatrick, J Bachenko, T Fornaciari
Springer Nature, 2022
842022
“you sound just like your father” commercial machine translation systems include stylistic biases
D Hovy, F Bianchi, T Fornaciari
Proceedings of the 58th Annual Meeting of the Association for Computational …, 2020
82*2020
Identifying fake amazon reviews as learning from crowds
T Fornaciari, M Poesio
Proceedings of the 14th Conference of the European Chapter of the …, 2014
822014
SemEval-2021 task 12: Learning with disagreements
A Uma, T Fornaciari, A Dumitrache, T Miller, J Chamberlain, B Plank, ...
Proceedings of the 15th International Workshop on Semantic Evaluation …, 2021
552021
A case for soft loss functions
A Uma, T Fornaciari, D Hovy, S Paun, B Plank, M Poesio
Proceedings of the AAAI Conference on Human Computation and Crowdsourcing 8 …, 2020
522020
SemEval-2023 task 11: Learning with disagreements (LeWiDi)
E Leonardelli, A Uma, G Abercrombie, D Almanea, V Basile, T Fornaciari, ...
arXiv preprint arXiv:2304.14803, 2023
402023
The effect of personality type on deceptive communication style
T Fornaciari, F Celli, M Poesio
2013 European Intelligence and Security Informatics Conference, 1-6, 2013
272013
Fake opinion detection: how similar are crowdsourced datasets to real data?
T Fornaciari, L Cagnina, P Rosso, M Poesio
Language Resources and Evaluation 54, 1019-1058, 2020
232020
BERTective: Language models and contextual information for deception detection
T Fornaciari, F Bianchi, M Poesio, D Hovy
Proceedings of the 16th Conference of the European Chapter of the …, 2021
202021
DeCour: a corpus of DEceptive statements in Italian COURts.
T Fornaciari, M Poesio
LREC, 1585-1590, 2012
172012
Lexical vs. surface features in deceptive language analysis
T Fornaciari, M Poesio
Proceedings of the ICAIL 2011 Workshop: Applying Human Language Technology …, 2011
172011
On the use of homogenous sets of subjects in deceptive language analysis
T Fornaciari, M Poesio
Proceedings of the Workshop on Computational Approaches to Deception …, 2012
162012
Increasing in-class similarity by retrofitting embeddings with demographic information
D Hovy, T Fornaciari
Proceedings of the 2018 Conference on Empirical Methods in Natural Language …, 2018
13*2018
Peer networks and entrepreneurship: A Pan-African RCT
F Vega-Redondo, P Pin, D Ubfal, C Benedetti-Fasil, C Brummitt, ...
IZA Discussion Paper, 2019
122019
Geolocation with attention-based multitask learning models
T Fornaciari, D Hovy
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019 …, 2019
122019
Detecting Deception in Italian Criminal Proceedings
T Fornaciari, M Poesio
Proceedings of the 10th Biennial Conference of the International Association …, 2011
92011
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20