Seguir
Abdul Nurunnabi
Abdul Nurunnabi
PhD, Curtin University, Australia
Dirección de correo verificada de postgrad.curtin.edu.au
Título
Citado por
Citado por
Año
Outlier detection and robust normal-curvature estimation in mobile laser scanning 3D point cloud data
A Nurunnabi, G West, D Belton
Pattern Recognition 48 (4), 1404-1419, 2015
2092015
Robust segmentation in laser scanning 3d point cloud data
A Nurunnabi, D Belton, G West
IEEE International Conference on Digital Image Computing Techniques and …, 2012
1702012
Road extraction in remote sensing data: A survey
Z Chen, L Deng, Y Luo, D Li, JM Junior, WN Goncalves, A Nurunnabi, J Li, ...
International Journal of Applied Earth Observation and Geoinformation, 112 …, 2022
1232022
Robust statistical approaches for local planar surface fitting in 3D laser scanning data
A Nurunnabi, D Belton, G West
ISPRS Journal of Photogrammetry and Remote Sensing 96, 106-122, 2014
1012014
Robust cylinder fitting in three-dimensional point cloud data
A Nurunnabi, Y Sadahiro, R Lindenbergh
ISPRS Hannover Workshop 2017, 63-70, 2017
702017
Robust cylinder fitting in laser scanning point cloud data
A Nurunnabi, Y Sadahiro, R Lindenbergh, D Belton
Measurement, 138, 632-651., 2019
682019
Robust statistical approaches for circle fitting in laser scanning three-dimensional point cloud data
A Nurunnabi, Y Sadahiro, D Laefer
Pattern Recognition 81 (September), 417-431, 2018
652018
Robust segmentation for large volumes of laser scanning three-dimensional point cloud data
A Nurunnabi, D Belton, G West
IEEE Transactions on Geoscience and Remote Sensing 54(8), 4790-4805, 2016
612016
Robust locally weighted regression techniques for ground surface points filtering in mobile laser scanning three dimensional point cloud data
A Nurunnabi, G West, D Belton
IEEE Transactions on Geoscience and Remote Sensing 54 (4), 2181-2193, 2016
572016
Diagnostic-robust statistical analysis for local surface fitting in 3D point cloud data
A Nurunnabi, D Belton, G West
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information …, 2012
542012
A Frustum-based probabilistic framework for 3D object detection by fusion of LiDAR and camera data
Z Gong, H Lin, D Zhang, Z Luo, J Zelek, Y Chen, A Nurunnabi, C Wang, ...
ISPRS Journal of Photogrammetry and Remote Sensing 159 (1), 90-100, 2020
462020
Robust segmentation for multiple planar surface extraction in laser scanning 3D point cloud data
A Nurunnabi, D Belton, G West
Pattern Recognition (ICPR), 2012, 21st International Conference on, 1367-1370, 2012
392012
Identification of multiple influential observations in logistic regression
AAM Nurunnabi, AHM Rahmatullah Imon, M Nasser
Journal of Applied Statistics 37 (10), 1605-1624, 2010
392010
Identification and classification of multiple outliers, high leverage points and influential observations in linear regression
AAM Nurunnabi, M Nasser, A Imon
Journal of Applied Statistics 43 (3), 509-525, 2015
332015
An efficient deep learning approach for ground point filtering in aerial laser scanning point clouds
A Nurunnabi, FN Teferle, J Li, R Lindenbergh, A Hunegnaw
ISPRS Congress, 2021. The Int Arc Photogramm Remote Sens and Spat Info Sci …, 2021
322021
Procedures for the identification of multiple influential observations in linear regression
AAM Nurunnabi, AS Hadi, A Imon
Journal of Applied Statistics 41 (6), 1315-1331, 2014
322014
Detection of individual trees in UAV LiDAR point clouds using a deep learning framework based on multi-channel representation,
Z Luo, Z Zhang, W Li, Y Chen, C Wang, A Nurunnabi, J Li
IEEE Transactions on Geoscience and Remote Sensing, 2021
232021
A diagnostic measure for influential observations in linear regression
AAM Nurunnabi, AHMR Imon, M Nasser
Communications in Statistics—Theory and Methods 40 (7), 1169-1183, 2011
232011
Outlier detection in logistic regression: A quest for reliable knowledge from predictive modeling and classification
A Nurunnabi, G West
Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on …, 2012
222012
Outlier diagnostics in logistic regression: a supervised learning technique
AAM Nurunnabi, M Nasser
2009 International Conference on Machine Learning and Computing, 2009
142009
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20