Seguir
Emanuele Rodolà
Emanuele Rodolà
Professor of Computer Science, Sapienza University of Rome
Dirección de correo verificada de di.uniroma1.it - Página principal
Título
Citado por
Citado por
Año
Geometric deep learning on graphs and manifolds using mixture model cnns
F Monti, D Boscaini, J Masci, E Rodola, J Svoboda, MM Bronstein
Proceedings of the IEEE conference on computer vision and pattern …, 2017
21792017
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models
A Srivastava, A Rastogi, A Rao, AAM Shoeb, A Abid, A Fisch, AR Brown, ...
arXiv preprint arXiv:2206.04615, 2022
8282022
Learning shape correspondence with anisotropic convolutional neural networks
D Boscaini, J Masci, E Rodolà, M Bronstein
Advances in neural information processing systems 29, 2016
6052016
Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning
P Gainza, F Sverrisson, F Monti, E Rodola, D Boscaini, MM Bronstein, ...
Nature Methods 17 (2), 184-192, 2020
5762020
Deep functional maps: Structured prediction for dense shape correspondence
O Litany, T Remez, E Rodola, A Bronstein, M Bronstein
Proceedings of the IEEE international conference on computer vision, 5659-5667, 2017
3032017
Partial functional correspondence
E Rodolà, L Cosmo, MM Bronstein, A Torsello, D Cremers
Computer graphics forum 36 (1), 222-236, 2017
2792017
Dense Non-Rigid Shape Correspondence using Random Forests
E Rodolà, S Rota Bulò, T Windheuser, M Vestner, D Cremers
Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, 2014
1922014
Zoomout: Spectral upsampling for efficient shape correspondence
S Melzi, J Ren, E Rodola, A Sharma, P Wonka, M Ovsjanikov
arXiv preprint arXiv:1904.07865, 2019
1772019
RUNE-Tag: A high accuracy fiducial marker with strong occlusion resilience
F Bergamasco, A Albarelli, E Rodolà, A Torsello
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, 113-120, 2011
1742011
Unsupervised learning of dense shape correspondence
O Halimi, O Litany, E Rodola, AM Bronstein, R Kimmel
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019
1712019
Anisotropic diffusion descriptors
D Boscaini, J Masci, E Rodolà, MM Bronstein, D Cremers
Computer Graphics Forum 35 (2), 431-441, 2016
1462016
Product manifold filter: Non-rigid shape correspondence via kernel density estimation in the product space
M Vestner, R Litman, E Rodola, A Bronstein, D Cremers
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2017
1362017
Computing and processing correspondences with functional maps
M Ovsjanikov, E Corman, M Bronstein, E Rodola, M Ben-Chen, L Guibas, ...
ACM SIGGRAPH 2017 Courses, 1-62, 2017
1352017
Computing and processing correspondences with functional maps
M Ovsjanikov, E Corman, M Bronstein, E Rodolà, M Ben-Chen, L Guibas, ...
SIGGRAPH ASIA 2016 Courses, 9, 2016
1352016
A scale independent selection process for 3d object recognition in cluttered scenes
E Rodola, A Albarelli, F Bergamasco, A Torsello
International journal of computer vision 102, 129-145, 2013
1292013
Fully spectral partial shape matching
O Litany, E Rodolà, AM Bronstein, MM Bronstein
Computer Graphics Forum 36 (2), 247-258, 2017
1222017
Multiview registration via graph diffusion of dual quaternions
A Torsello, E Rodolà, A Albarelli
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on …, 2011
1222011
A Game-Theoretic Approach to Deformable Shape Matching
E Rodolà, AM Bronstein, A Albarelli, F Bergamasco, A Torsello
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, 2012
1022012
Efficient deformable shape correspondence via kernel matching
M Vestner, Z Lähner, A Boyarski, O Litany, R Slossberg, T Remez, ...
2017 international conference on 3D vision (3DV), 517-526, 2017
98*2017
SHREC'16: Partial matching of deformable shapes
L Cosmo, E Rodola, MM Bronstein, A Torsello, D Cremers, Y Sahillioǧlu
Eurographics Workshop on 3D Object Retrieval, EG 3DOR, 61-67, 2016
902016
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20